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Proposed is a novel algorithm to design binary orthogonal code for MIMO radar. On the premise of maintaining the 
orthogonality of each code, we can obtain the binary code set with a lower autocorrelation sidelobe peak (ASP) and cross-
correlation peak (CP). Simulation results show that the algorithm is effective. 
 
(Received July 5, 2011; accepted August 10, 2011) 
 
Keywords: MIMO Radar, Binary orthogonal code, Genetic algorithm, Hadamard matrix 
 

 

1. Introduction 
 

Multiple Input Multiple Output (MIMO) radar 
performance is strongly dependent on waveform design. 
Many researchers used simulated annealing or genetic 
algorithms [1-3] to obtain the codes with superior 
autocorrelation and cross-correlation function properties; 
however, the orthogonality of each code isn’t hold. 
Namyoon et al. proposed the method of designing 
orthogonal pulse compression code set which maintaining 
the orthogonality of each code [4].  In this paper, we show 
how binary orthogonal code set is optimized using Genetic 
Algorithm (GA) on the premise of keeping the 
orthogonality of each code; the simulation results are 
compared with [4].    

 
 
2. Signal model and algorithm  
 
Consider a binary code set with code length N  and 

set size M  as expressed by [5] 
 

( ){ ( ) , 1, 2, , }, 1, 2, ,mj n
ms n e n N m Mf= = =   (1) 

 
where  (( )m nf ( ) {0, }m n  ) is the phase of sub-pulse n  of 

signal  in the signal set. Thus, the cross-correlation function 
of orthogonal binary codes can be defined as: 
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 and  is the discrete time index. 
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With the method of [4], the iteration of the proposed 
algorithm is used to achieve better performance; but in 
this paper, a novel chromosome coding is constructed to 
enable us to use GA for optimization on the premise of 
maintaining the orthogonality of each code. To not only 
minimize ASP and CP but also minimize the total 
autocorrelation sidelobe energy and cross-correlation 
energy, the cost function is designed as [2]:  
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Fig. 1 provides the flow chart of proposed algorithm.  
 
 

 
Fig. 1. Flow chart for designing binary orthogonal code 

set using GA. 
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Basic design steps of applying GA are summarized as 
follows: 

Step1: Generate a N  Hadamard matrix  since 
its rows are mutually orthogonal.  The first row of , 
which is with all the columns valuing 1, can be discarded 
quickly because it dose not satisfy the condition of binary 

code. Then the remainders, we write as , will be used in 

the following steps. Note that all elements of W have 
binary phase. 

N W



W

W

Step2: To reduce sidelobe and maintain the 

orthogonality of the rows of , permute the columns of 

randomly to obtain matrix Q  (Operation 1); select  

W

W
M  ( ) rows from Q  randomly (Operation 2). 
Consequently, rearrange the integers from 1 to N 
randomly to obtain a 1  random array which can 
represent the first operation; chose M integers from 

 randomly to form a 1

1M N 

, 1N 

N

1, M  random array which 
can represent the second operation. Stack the latter array 
on the right-hand side of the former array to construct a 

 GA’s chromosome (individual). To illustrate 

the novel construct method, an individual with 

 N M 1

10N   
and 2M  is given in Fig. 2. Because the method of 
chromosome coding in this paper is different from of 
common coding, the original crossover and mutation 
operators need to be modified. 

Step3: Initialize a population, each individual of 
which is encoded according to Step2. 

Step4: Use (3) to evaluate the fitness function by 
decoding the chromosome according to inverse process of 
Step2. 

Step5: The operators we used include roulette wheel 
operator, modified uniform crossover operator and 
modified mutation operator.  

Step6: If an acceptable fitness is not reached, go back 
to Step4; else, stop the GA and decode the best 
chromosome. 
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Fig. 2. An individual with and10N = 2M = . 

 
 

3. Simulation results and discussion  
 
Table 1 lists the two sequences for the designed 

binary orthogonal code set with and40N = 2M = , and 
the normalized aperiodic autocorrelation curve and cross-
correlation curve for the two sequences are plotted in Fig. 
3 and Fig. 4, respectively. As illustrated in Fig. 4, the 
cross-correlation curve reaches 0 when  in0k (2), which 
means the designed code set is orthogonal to each other.  

 
 
 

Table 1. Binary orthogonal code sequences. 
 
 Binary orthogonal code sequences 

Code 1 1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,1,-

1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,1,-1,-1,1,1,1,1 

Code 2 -1,-1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,1,-1,1,1,1,1,-

1,1,1,1,-1,1,-1,-1,-1,1,1,1,-1,-1,1,1,1,1,-1,1 
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Fig. 3. Autocorrelation curve of sequences with   40N =
and 2M = . 
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Fig. 4. Cross-correlation curve of sequences with  40N =
 and 2M = . 

 
 
The ASP and CP of the designed of designed 

orthogonal binary code sequences are shown in Table 2. 
The diagonal entries of the table are ASPs, and the off-
diagonal entries are CPs. The recalculated ASPs and CPs 
of Namyoon’s [4] orthogonal binary-phase pulse 
compression codes (OBPPCC) with and40N = 2M =  
are shown in Table 3. Comparing the values of Table 2 
and Table 3, it can be seen that the ASPs and CPs of the 
designed binary code set in this paper are lower than 
Namyoon’s [4]. Especially the ASP of Code 1 is about 
2.5dB less than Namyoon’s [4]. This means that the 
algorithm of this paper could suppress the ASP and CP 
better while keeping the orthogonality of each code.  
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Table 2. ASPs and CPs of designed binary orthogonal  4. Conclusion 
code sequences.  

 In this study, the proposed algorithm applies the 
orthogonality of Hadamard matrix and constructs a novel 
chromosome coding which enable us to employ the GA 
algorithm for optimization and it can improve the 
performance of ASP and CP. 

 Code 1 Code 2 

Code 

1 

0.15 0.275 

Code 

2 

0.275 0.175 
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